
Monitoring Protocol Traffic with a MAGNeT
Mark K. Gardner

�
, Wu-chun Feng

���
, Jeffrey R. Hay

�
�
mkg, feng, jrhay � @lanl.gov

�
Computer & Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545

�
Department of Computer & Information Science

Ohio State University
Columbus, OH 43210

Abstract— Network researchers have traditionally fo-
cused on monitoring, measuring, and characterizing traffic
in the network to gain insight into building critical network
components (e.g., protocol stacks, routers, switches, and
network interface cards). Recent research suggests that ad-
ditional insight can be obtained by monitoring traffic at the
application level (i.e., before traffic is modulated by the pro-
tocol stack) rather than in the network (i.e., after traffic is
modulated by the protocol stack). Thus, we present MAG-
NeT: Monitor for Application-Generated Network Traffic,
a toolkit that captures traffic generated by the application
(as it traverses the protocol stack) rather than traffic in the
network.

MAGNeT provides the capability to monitor protocol-
stack behavior, construct a library of traces of application-
generated traffic, verify the correct operation of protocol
enhancements, troubleshoot and tune protocol implemen-
tations, and perhaps even replace tcpdump.

In addition, we have extended MAGNeT to instrument
CPU context switches as an example of how the general
kernel monitoring mechanisms of MAGNeT can be used to
monitor any kernel event in the operating system.

Index Terms— monitor, measurement, network proto-
col, traffic characterization, TCP, tcpdump, MAGNeT, traces,
application-generated traffic, CPU scheduler.

I. INTRODUCTION

Network researchers often use traffic libraries such
as tcplib [1], network traffic traces such as those
at [2,3], or network models such as those found in [4]
to obtain insight into network-protocol operation and

This work was supported by the U.S. Dept. of Energy’s Laboratory-
Directed Research & Development Program and the Los Alamos Com-
puter Science Institute through Los Alamos National Laboratory con-
tract W-7405-ENG-36. Any opinions, findings, and conclusions, or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DOE, Los Alamos National
Laboratory, or the Los Alamos Computer Science Institute.

to focus their network experiments. However, such
libraries, traces, and models are based on measure-
ments made by tcpdump [5] (or similar tools like
PingER [6], NLANR Network Analysis Infrastruc-
ture [7], NIMI [8] or CoralReef [9]), meaning that
the traffic an application sends on the network is
captured only after having passed through TCP (or
more generally, any protocol stack) and into the net-
work. That is, the tools capture traffic on the wire (or
in the network) rather than at the application level.
Thus, the above tools cannot provide any protocol-
independent insight into the actual traffic patterns of
an application.

Researchers have traditionally designed and tested
network protocols using either (1) “infinite” file
transfers or (2) traffic traces which have already been
modulated by a protocol stack. The first is appro-
priate if bulk data transfers constitute the major-
ity of the traffic. But networks are no longer pri-
marily filled with file transfer protocol (FTP) traf-
fic. They include substantial amounts of hypertext
transfer protocol (HTTP) and streaming multimedia
traffic. The second is acceptable if the differences
between application-generated traces and network-
captured traces are negligible. However, as we will
show in this paper, the differences in the traces
can be substantial, indicating that the protocol stack
adversely modulates the application-generated traf-
fic patterns. Hence tools for obtaining application-
generated traffic traces are needed.

To determine the application-generated traffic pat-
terns before being modulated by a protocol stack,

Passive and Active Measurement Workshop (PAM2002),
Fort Collins, Colorado, March 2002. LA-UR 02-0808



Data Link

IP

TCP

Application

RMON

tcpdump

Network

TCP Kernel
Monitor{MAGNeT

NetLogger

Fig. 1. Monitoring Points of Various Tools

as well as to determine the modulation caused by
each layer of the stack, we present the Monitor for
Application-Generated Network Traffic (MAGNeT).
MAGNeT differs from existing tools in that traf-
fic is monitored not only upon entering and leaving
the network but also throughout the entire network-
protocol stack.

MAGNeT is not limited to monitoring network
protocol stacks. It provides a general framework for
monitoring any kernel event. As we will show, it can
be used to monitor even time-sensitive events such as
context switches.

A. Related Work

As Figure 1 shows, MAGNeT differs from tcp-
dump-like and RMON tools in that it makes fine-
grained measurements throughout the entire proto-
col stack, not just at the network wire level. While
the TCP kernel monitor [10] is similar to MAGNeT,
MAGNeT differs in at least two ways. First, MAG-
NeT can be used anywhere in the protocol stack, not
just for monitoring TCP. Second, MAGNeT moni-
tors a superset of the data that the TCP kernel moni-
tor does.

NetLogger [11] collects, correlates, and presents
information about the state of a distributed system.
It includes tools for instrumenting applications, host
systems, and networks. It also presents tools for vi-
sualizing the collected data. However, it requires re-
compilation or relinking of applications. Because of
its focus on overall system dynamics, NetLogger is
better than MAGNeT at presenting an overall view
of complex distributed system behaviors that are the
result of the interaction of multiple components such
as network, disk and CPU activity.

In contrast, MAGNeT monitors all applications
without modification. It does not require applica-
tions to be recompiled or relinked. MAGNeT also

provides greater detail about the state of the net-
work protocol stack (or operating system) than Net-
Logger. Furthermore, MAGNeT’s timestamps are
several decimal orders of magnitude more accurate.
Thus, we view MAGNeT as complementary to Net-
Logger and plan to make MAGNeT’s output compat-
ible to leverage NetLogger’s visualization tools.

II. MAGNET DESIGN

The design of MAGNeT focuses on two primary
goals: accurate timestamps and transparency to the
end user when run in a production environment.
We achieve accurate time measurement by using the
CPU cycle counter (available in modern micropro-
cessors) to record timestamps with cycle-level gran-
ularity. To provide transparency to the end user, we
implement the core MAGNeT functionality as an op-
erating system (OS) patch. This patch creates a cir-
cular buffer in kernel memory and places function
calls throughout the networking stack to record ap-
propriate information as data traverses the stack. A
user-space program, packaged with the MAGNeT
toolkit, periodically empties this kernel buffer, sav-
ing the binary data to disk. For the post-processing of
data, a set of data-analysis tools translates the binary
data into human-readable form. Finally, to complete
the MAGNeT toolkit, a library of scripts automates
the collection of data from a set of MAGNeT-ized
hosts.

A. MAGNeT in Kernel Space

Figure 2 provides a high-level overview of the
operation and data flow of MAGNeT. Applications
make send() and recv() system calls during
their course of execution to send and receive net-
work traffic. These calls eventually make use of
TCP, IP, or other network protocols in the kernel to
transfer data on to the network. Each time a pro-
tocol event occurs, the MAGNeT-ized kernel makes
a call to the MAGNeT recording procedure (which
in our implementation is called magnet-add()).
This procedure saves relevant data to a circular buffer
in kernel space, which is then saved to disk by
the MAGNeT user-level application program called
magnet-read.

The MAGNeT kernel patch adds several functions
to Linux 2.4. The function magnet add() adds a
data point to a circular buffer that is pinned in kernel



buffer
kernel

magnet−read

send()

recv()

Disk

magnet_add()

TCP

Network

UDP

application

IP

...

Fig. 2. Overview of MAGNeT Operation

memory. This function is optimized so that each in-
strumentation call uses as few resources as possible
and can be called anywhere in the protocol stack. In
addition, a new file is added to the /proc file system
at /proc/net/magnet. This file may be read by
any user to determine the current state and parame-
ters of the MAGNeT kernel code.

Figure 3 shows the data structure that is appended
to the kernel buffer as a MAGNeT instrumentation
record at each instrumentation point. The sockid
field contains a unique identifier for each connec-
tion stream, providing a way to separate individual
data streams from a trace while protecting the pri-
vacy of the application and user. The timestamp
field holds the value read from the CPU cycle counter
and also synchronizes MAGNeT’s kernel- and user-
space processes. The event field keeps track of
the type of event a particular record refers to, e.g.,
MAGNET IP SEND. The size field contains the
number of bytes that were transferred during the
event. Finally, the data field (an optional field se-
lected at kernel-compile time) is a union of various
structures in which information specific to particular
protocols can be stored. This field provides a mecha-
nism for MAGNeT to record protocol-state informa-
tion along with event transitions. Figure 14, in the
appendix, shows the union members for TCP and IP
events. (For more details on MAGNeT’s implemen-
tation, see [12]).

B. MAGNeT in User Space

The user-level interface to MAGNeT consists
of three application programs (magnet-read,
magnet-parse, and mkmagnet), a special de-
vice file to facilitate kernel/user communication, and
automating scripts. magnet-read saves data from

struct magnet_data {
void *sockid;
unsigned long long timestamp;
unsigned int event;
int size;
union magnet_ext_data data;

}; /* struct magnet data */

Fig. 3. The MAGNeT Instrumentation Record

the kernel’s buffer, which is exported via the spe-
cial device file, to a disk file, and magnet-parse
translates the saved data into a human-readable form.
mkmagnet is a small utility program to create the
files that magnet-read requires to operate. The
scripts included with the MAGNeT distribution al-
low the operation of MAGNeT to be fully automated
and transparent to the end user.

C. Kernel/User Synchronization

The MAGNeT kernel patch exports a circular
buffer to user space via shared memory. Since the
kernel and user processes access the same area of
physical memory, MAGNeT coordinates accesses by
the two processes using a field of the instrumentation
record as a synchronization flag between the MAG-
NeT user and kernel processes, as shown in Figures 4
and 5. Specifically, our initial implementation of
MAGNeT uses the timestamp as the synchroniza-
tion field.

Before writing to a slot in the buffer, the MAGNeT
kernel code checks the synchronization field for that
slot. If the field indicates that the slot has not yet
been copied to user space (e.g., timestamp field
is non-zero), the kernel buffer is full. In this case,
the kernel code increments a count of the number of



Slot Empty?

Next Slot
Go to Mark Slot

as Empty
ReadEvent
from Buffer

Sleep Some

No

Yes

Fig. 4. MAGNeT User Operation

Slot Empty?
Wait for Event

to Occur

Lost Event Count
Equal to Zero?

Yes

Event Count
Increment Lost

Event Count
Save LostMark Slot

as Occupied Count to Zero
Set Lost Event

Next Slot
Go to

Next Slot
Go to Mark Slot

as Occupied Save Event

No

Yes

No

Fig. 5. MAGNeT Kernel Operation

instrumentation records that could not be saved due
to the buffer being full. Otherwise, the kernel code
writes a new instrumentation record and advances to
the next slot in the buffer.

The user application accesses the same circular
buffer via kernel/user shared memory. When the syn-
chronization field at the current slot indicates the slot
contains a valid record, the application reads the en-
tire record and resets the synchronization field (e.g.,
resets the timestamp field to zero) to signal to the
kernel that the slot is once again available. The ap-
plication then advances to the next slot in the buffer.

When the kernel has a non-zero count of unsaved
events and buffer space becomes available, the kernel
writes a special record to report the number of instru-
mentation records that were not recorded. Thus, dur-
ing post-processing of the data, the fact that events
were lost is detected at the appropriate place within
the data stream. Our experience to date indicates that
while unrecorded events are possible, they rarely oc-

cur during the monitoring of actual users. We will
return to the subject of lost events in Section III-A.2.

D. MAGNeT Timestamps

To ensure the greatest accuracy possible, MAG-
NeT uses the cycle counter available on contempo-
rary microprocessors as the source of its timestamps.
MAGNeT obtains this information via the kernel’s
getcyclecounter() function, which keeps the
MAGNeT code hardware-independent. Given the
speed of the processor, the difference between two
cycle counts can be converted to an elapsed time.
Given a time referent, elapsed time can be converted
to a date and time.

MAGNeT exports the processor speed and native
bit-order of the trace in the first record of the trace
so that magnet-read or other user-space tools can
convert the timestamps to elapsed time. MAGNeT
also exports the starting date and time (as seconds
since the Unix epoch) so that elapsed time can be
converted to a date and time.



Configuration
1 Linux 2.4.3
2 Linux 2.4.3 w/MAGNeT
3 Linux 2.4.3 w/MAGNeT, magnet-read on receiver
4 Linux 2.4.3 w/MAGNeT, magnet-read on sender
5 Linux 2.4.3, tcpdump on receiver
6 Linux 2.4.3, tcpdump on sender

TABLE I

TEST CONFIGURATIONS

III. MAGNET PERFORMANCE ANALYSIS

To determine the overhead of running MAGNeT,
we measure the maximum data rate and the CPU uti-
lization between a sender and receiver with and with-
out MAGNeT. For comparison, we also measure the
overhead of running tcpdump. In total, the six con-
figurations shown in Table I are compared.

Our baseline configuration runs between two ma-
chines with stock Linux 2.4.3 kernels. The second
configuration uses the same machines but with the
MAGNeT patches installed. Although present in
memory, MAGNeT records are not saved to disk.
The third configuration is the same as the second ex-
cept magnet-read runs on the receiver to drain the
MAGNeT buffer. The fourth configuration is also the
same as the second, but with magnet-read on the
sender. For the fifth and sixth configurations, tcp-
dump is run on stock Linux 2.4.3 kernels. The fifth
configuration runs tcpdump on the receiver, while
the sixth runs tcpdump on the sender. All configu-
rations are tested on both 100 Mbps and 1000 Mbps
Ethernet networks.

We conduct the tests between two identical dual
400 MHz Pentium IIs with NetGear 100 Mbps and
Alteon 1000 Mbps Ethernet cards. MAGNeT is
configured to record only the transitions between
protocol stack layers, not the optional information
about the packets and the protocol state. The de-
fault 256 KB kernel buffer is also used to store event
records.

For a workload, we use netperf [13] on the
sender to saturate the network.1 We minimize the
amount of interference in our measurements by elim-
inating all other network traffic and minimizing the
number of processes running on the test machines to
netperf and a few essential services.

�
The command we use is “netperf -P 0 -c <local CPU

index> -C <remote CPU index> -H <hostname>”

100 Mbps 1000 Mbps
Throughput (Kbps) Throughput (Kbps)

1 94.14
�

0.00 459.48
�

1.63
2 94.13

�
0.01 452.46

�
1.82

3 90.79
�

0.82 444.31
�

1.66
4 90.69

�
0.88 440.24

�
2.11

5 89.39
�

1.48 290.68
�

15.64
6 89.04

�
0.84 343.22

�
18.71

TABLE II

PERFORMANCE OF MAGNET VS. tcpdump

0

5

10

15

20

25

30

35

40

MAGNeT MAGNeT/recv MAGNeT/send tcpdump/recv tcpdump/send

Pe
rc

en
t R

ed
uc

tio
n 

in
 T

hr
ou

gh
pu

t

Test Conducted

100 Mbps

1000 Mbps

Fig. 6. Percent Reduction in Network Throughput

A. Performance

We compare the performance of MAGNeT with
tcpdump as the closest commonly-available moni-
toring tool even though MAGNeT records a different
set of information than tcpdump (i.e., MAGNeT
records application and protocol stack-level traffic
while tcpdump only records network-wire traffic).
By default (and as tested) tcpdump stores the first
68 bytes of every packet. MAGNeT, by default,
stores a 24-byte record for each protocol of the four
layers in the stack. Thus MAGNeT records 96 bytes
for every packet.

Table II and Figure 6 present the performance of
MAGNeT and tcpdump for our tests. Along with
the mean, the width of the 95% confidence interval
is given.

1) Network Throughput: The kernel-resident
portion of MAGNeT executes whether information is
being saved to disk or not. Table II shows that “Linux
2.4.3 w/MAGNeT” over 100 Mbps and 1000 Mbps
Ethernet incurs negligible overhead when data is not
being saved to disk. With magnet-read active on



the receiver or sender, MAGNeT incurs less than a
5% reduction in network throughput on a saturated
network. Furthermore, the penalty is nearly con-
stant regardless of network speed. In contrast, while
tcpdump incurs roughly the same penalty as MAG-
NeT over 100 Mbps networks, the penalty increases
to 25%-35% of total throughput at 1000 Mbps. Thus,
MAGNeT scales better than tcpdump.

2) Event Loss: Analysis of the MAGNeT-
collected data for our tests reveals that MAGNeT oc-
casionally fails to record events at high network uti-
lization. On a saturated network, MAGNeT, in its
default configuration, was unable to record approx-
imately 3% of the total events for the 100 Mbps tri-
als, while for the 1000 Mbps tests the loss rate ap-
proached 15%. These losses are due to the 256 KB
buffer in the kernel filling before magnet-read is
able to drain it.

By comparison, loss rates for tcpdump are sig-
nificantly higher than for MAGNeT. Under the same
test conditions, average packet-loss rates for tcp-
dump are around 15% on a saturated 100 Mbps net-
work, i.e., five times higher than MAGNeT in its de-
fault configuration.

Because tcpdump does no buffering, loss rates
will increase as network speeds increase. In contrast,
if MAGNeT’s loss rate is too high, it can be adjusted
to an acceptable level via the mechanisms discussed
below; tcpdump lacks such adjustability.

As noted in [14], our toolkit provides two meth-
ods for reducing the event loss rate: (1) increasing
the kernel buffer size or (2) reducing the time mag-
net-read waits before draining the kernel buffer.
Figure 7 shows the effect of these parameters on
event loss rate for the 100 Mbps saturated network
tests.

Increasing the kernel buffer size reduces MAG-
NeT’s event loss rate down to virtually no lost events
under any network load with a 1 MB buffer. How-
ever, because this buffer is pinned in memory, a large
buffer also reduces the amount of physical memory
available to the kernel and applications.

Adjusting the amount of time magnet-read
waits before draining newly accumulated records
also affects the performance of MAGNeT. Shorter
delays cause the buffer to be drained more frequently,
thus reducing the chance of lost events. However,
shorter delays create more work (in terms of CPU us-
age and, possibly, disk write activity), and thus may
interfere with the system’s normal use.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

20
0%

L
os

t E
ve

nt
s 

(P
er

ce
nt

ag
e)

Percent of default delay time

128KB
256KB
512KB

1024KB

Fig. 7. MAGNeT’s Event-Loss Rate, 100 Mbs Ethernet

51

52

53

54

55

56

57

58

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

20
0%

A
ve

ra
ge

 C
PU

 L
oa

d 
(S

en
d+

R
ec

v)

Percent of default delay time

128KB
256KB
512KB

1024KB

Fig. 8. MAGNeT’s Average CPU Utilization, 100 Mbs Ethernet

Figure 8 shows the average CPU utilization for dif-
ferent delays and buffer sizes with MAGNeT running
on the sending machine. (The high CPU utilization
reported in this graph is due to our test procedure of
flooding the network with netperf, which places
an unusually high load on the sender CPU.) As the
results show, CPU utilization is relatively insensitive
to the range of kernel buffer sizes tested but it is sen-
sitive to changes in delay.

IV. APPLICATIONS OF MAGNET

The MAGNeT toolkit provides a transparent
method of gathering application traffic data on indi-
vidual machines. MAGNeT meets its goal of record-
ing application-generated traffic patterns while caus-
ing minimal interference. In this section, we pro-
vide examples of how MAGNeT-collected informa-
tion can be utilized.



0

2000

4000

6000

8000

10000

12000

60 60.2 60.4 60.6 60.8 61

Si
ze

 (
B

yt
es

)

Time (Seconds)

Delivered to network Application send() call

Fig. 9. MAGNeT FTP trace

A. Traffic Pattern Analysis

We can use MAGNeT-collected traces to investi-
gate differences between the traffic generated by an
application and that same traffic as it appears on the
network (i.e., after modulation by a protocol stack).
As a simple example, we consider a trace of a FTP
session from our facility in Los Alamos, NM to a lo-
cation in Dallas, TX. Figure 9 shows a one-second
MAGNeT trace, taken one minute into the transfer.

As can be seen from the graph, the FTP applica-
tion attempts to send 10 KB segments of data every
20 milliseconds, but the protocol stack (TCP and IP
in this case) modulates the traffic into approximately
1500-byte packets, the maximum payload size on
Ethernet networks, at intervals of varying duration.
The variable spacing of the traffic intervals is caused
by TCP waiting for positive acknowledgements be-
fore sending more traffic.

If we send the traffic stream as it was delivered to
the network through another TCP stack, as would be
the case when a firewall breaks a logical connection
into two physical connections, we see further mod-
ulation. Each subsequent run of network-delivered

TABLE III

EFFECT OF MULTIPLE TCP STACKS

Trial Data Size Inter-packet Spacing
(sec)

Application 3284 0.124
1st TCP stack 1016 0.045
2nd TCP stack 919 0.037
3rd TCP stack 761 0.079
4th TCP stack 723 0.122

5.0 5.2 5.4 5.6 5.8 6.0
Time (seconds)

0

500

1000

1500

2000

B
yt

es

IP Received
Socket Received

Fig. 10. MAGNeT Trace of MPEG-1 Layer 3 Audio Stream

traffic through TCP further modulates the traffic, as
shown in Table III. Thus, we see that TCP signifi-
cantly perturbs traffic patterns, even when the traffic
pattern has previously been shaped by TCP. This re-
sult implies that wire-level traffic traces do not rep-
resent the true networking requirements of end-user
applications.

The next example shows a dramatically different
traffic pattern illustrating that the demands placed
upon the network depend upon the application.

In this example, we monitor network traffic on a
machine playing a 128 Kbps MPEG-1 Layer 3 (MP3)
audio stream from mp3.com. To initiate the trans-
fer, the MP3 player requests the desired stream. The
server then begins streaming the data at a uniform
rate. Figure 10 shows one second of a MAGNeT
trace taken five seconds after the audio stream be-
gins.

The figure graphically shows when the IP layer
receives data from the device driver and when the
socket layer of the kernel receives data from the TCP
layer. The application’s network requirements are
for small blocks of 418 bytes, corresponding to the
frames of the MP3 audio stream, in bursts which
are non-uniformly spaced but which average 21 ms
apart. The average data rate delivered to the applica-
tion is 127.1 Kbps. On the other hand, the network
delivers 1380 bytes of data regularly every 79 ms for
an average data rate of 139.9 Kbps.

This behavior is in contrast to the FTP application
shown earlier where the application requests large
blocks of data periodically and the network frag-
ments the data into smaller units and transmits them
with irregular spacing. Thus we see that application-



0

5000

10000

15000

20000

25000

30000

0 50 100 150 200

B
uf

fe
r 

Si
ze

 (
B

yt
es

)

Time (Events)

Fig. 11. Size of Sending TCP Buffer

generated requests vary widely, depending upon the
application, and do not resemble the traffic on the
network.

B. Resource Management

With the optional data field compiled in, MAG-
NeT can return snapshots of the complete protocol
state during the execution of real applications on
live networks. Previously, this information was only
available in simulation environments such as ns. This
kind of data is invaluable when planning proper re-
source allocation on large computing systems.

For example, Figure 11 shows the size of the send-
ing TCP buffer during the streaming of an MPEG
movie. The buffer contains data recorded as “sent”
by the application, but not yet actually delivered to
the network by TCP. It reaches a maximum size of
around 30 KB but averages 6.5 KB for the life of the
connection. With this kind of information, a resource
allocation strategy which conforms to the true needs
of applications may be developed.

C. Network-Aware Application Development

As discussed in Section II, MAGNeT captures
data which network-aware applications can use to
appropriately tune their performance. In our im-
plementation, any application is able to open the
MAGNeT device file and map the MAGNeT data-
collection buffer to a portion of its memory space.
Thus, a daemon may be developed which monitors
the MAGNeT-collected data and provides a sum-
mary of the data for specific connections at the re-
quest of network-aware applications. This strat-
egy consolidates all network-monitoring activity to

amortize the overhead across all network-aware ap-
plications running on the system.

D. Kernel Monitoring

Besides being useful for monitoring the network
protocol stack, MAGNeT can also be used to mon-
itor other kernel events. As an example, we extend
MAGNeT to record the scheduling behavior of the
operating system (OS). Clearly, such information is
useful to OS designers and implementors.

Here, we focus on the following events: process
creation (fork), scheduling (schedule) and ter-
mination (exit). From the MAGNeT traces, we
calculate the duration of the context switches. By
context-switch duration we mean the time it takes for
the kernel to decide which process to execute next
and to reload the process’ state.2 Modifying MAG-
NeT for this purpose requires a total of 26 lines of
code to be added to four files.

For the experiment, we run one of the machines in
Section III with the MAGNeT-ized kernel contain-
ing the monitoring extensions to the scheduler. The
baseline workload has only the usual system pro-
cesses (the “idle” test). The next workload adds a
process spinning in an infinite loop doing nothing
(CPU-bound test).

Figure 12 shows the duration of every context
switch that the system executes as a function of
the time since the beginning of the “idle” system
test. The average context switch time for CPU #0
is around 2 � s corresponding to the fast path through
the scheduler with occasional excursions to approxi-
mately 4 � s due to taking the slow path instead. On
the other hand, context switches for CPU #1 are ap-
proximately 4-6 � s likely due to contention on the
spin lock protecting the ready process queue.

Figure 13 shows the same graph but with the CPU-
bound process running. The average context switch
time for CPU #0 now oscillates between 2 � s and
6 � s with a period of around 2 sec. Likewise, the av-
erage context switch time for CPU #1 also oscillates
but 180 degrees out of phase. This curious behav-
ior is due to a known problem in the Linux kernel

�
This is not the entire penalty suffered by an application. It is very

difficult, in general, to quantify all the effects of context switches on
contemporary microprocessors. For example, extra cache misses occur
as a result of process state having been evicted from the cache when
another process ran. These effects are not seen at context-switch time
but are manifest as extra cycles consumed during instruction execu-
tion long after the context switch. The cache effects continue until the
working set is once again loaded.



0

2

4

6

8

10

12

14

16

18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

C
on

te
xt

 S
w

itc
h 

T
im

e 
(m

ic
ro

se
co

nd
s)

Time (seconds)

CPU #0
CPU #1

Fig. 12. Duration of Context Switches on an “Idle” Machine

0

2

4

6

8

10

12

14

16

18

0.0 0.5 1.0 1.5 2.0 2.5 3.0

C
on

te
xt

 S
w

itc
h 

T
im

e 
(m

ic
ro

se
co

nd
s)

Time (seconds)

CPU #0
CPU #1

Fig. 13. Duration of Context Switches with a CPU-bound Process

scheduler which causes a process to migrate to idle
processors in a round-robin fashion [15]. It is one
of the items being worked on in the experimental 2.5
kernel. The spikes in context switch duration imme-
diately after a process migrates to the other CPU are
due to the cache effects mentioned earlier.

V. FUTURE WORK

Our implementation of MAGNeT can be improved
in several ways. We would like to allow the user to
set various MAGNeT parameters (e.g., the kinds of
events to be recorded, the size of the kernel buffer,
etc.) at run-time rather than at kernel compile-time.
Allowing run-time user configuration of the MAG-
NeT toolkit could be accomplished by making the
current /proc file writable. Run-time configuration
would greatly increase the usability and flexibility of
the MAGNeT toolkit.

Another potential area of improvement in MAG-
NeT is the mechanism used to store recorded data
from the kernel buffer to disk. Rather then have a
user-level process, a better approach may be to utilize
kernel threads to perform all steps of the instrumen-
tation [16]. With this methodology, the need for the
special device file, the file created by mkmagnet,
and the kernel/user shared memory would be elimi-
nated. In addition, kernel threads may lower MAG-
NeT’s already low event loss rate by eliminating the
overhead of magnet-read. However, implement-
ing kernel threads may impede exporting real-time
data to network-aware applications. The use of ker-
nel threads may be explored for future versions of
MAGNeT.

Timing with CPU cycle counters can be problem-
atic on contemporary CPUs which may change their
clock rate according to power management poli-
cies. If the kernel detects such changes, MAGNeT
could easily hook into the clock-rate detection code
and output new MAGNET SYSINFO events. These
events, containing new timing information, would al-
low correct post-processing in spite of CPU clock-
rate changes. However, current Linux production
kernels are unable to detect CPU clock rate changes
at run-time. We will modify MAGNeT to account
for CPU clock-rate changes when the Linux kernel
provides a mechanism for doing so.

For applications which are compiled to use sys-
tem shared libraries (rather than statically-compiled
libraries), an alternative method of gathering appli-
cation traffic patterns is to provide a shared library
which instruments network calls before passing the
calls on to the original system library. Since MAG-
NeT records network call events only within the ker-
nel, the use of such an instrumented library (which
records application events in user space, before any
context switch) is complimentary to the approach
taken in MAGNeT. Using such a library in conjunc-
tion with MAGNeT would allow system call over-
head to be quantified while still requiring no change
to applications.

VI. CONCLUSION

Current traffic libraries, network traces, and net-
work models are based on measurements made by
tcpdump-like tools These tools do not capture an
application’s true traffic demands; instead they cap-
ture an application’s demands after having been



modulated by the protocol stack. Therefore, existing
traffic libraries, network traces, and network models
cannot provide protocol-independent insight into the
actual traffic patterns of an application. The MAG-
NeT toolkit fills the void by providing a flexible and
low-overhead infrastructure for monitoring network
traffic anywhere in the protocol stack.

ACKNOWLEDGEMENTS

This work was funded in part by the U.S. Depart-
ment of Energy Laboratory Directed Research pro-
gram and the U.S. Department of Energy Office of
Science.

REFERENCES

[1] P. Danzig and S. Jamin, “tcplib: A Library of TCP Internetwork
Traffic Characteristics,” http://irl.eecs.umich.edu/
jamin/papers/tcplib/tcplibtr.ps.Z, 1991.

[2] “The Internet Traffic Archive,” http://ita.ee.lbl.gov/
html/traces.html.

[3] A. Kato, J. Murai, and S. Katsuno, “An Internet Traffic Data
Repository: The Architecture and the Design Policy,” in INET’99
Proceedings.

[4] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Pois-
son Modeling,” IEEE/ACM Transactions on Networking, vol. 3,
no. 3, pp. 226–244, June 1995.

[5] “tcpdump,” http://www.tcpdump.org.
[6] W. Matthews and L. Cottrell, “The PingER Project: Active Inter-

net Performance Monitoring for the HENP Community,” IEEE
Communications, May 2000.

[7] A.J. McGregor, H-W Braun, and J.A. Brown, “The NLANR
Network Analysis Infrastructure,” IEEE Communications, May
2000.

[8] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architec-
ture for large-scale internet measurement,” IEEE Communica-
tions, 1998.

[9] CAIDA, “CoralReef Software Suite,” http://www.caida.
org/tools/measurement/coralreef.

[10] J. Semke, “PSC TCP Kernel Monitor,” Tech. Rep. CMU-PSC-
TR-2000-0001, PSC/CMU, May 2000.

[11] B. W. Tierney et al., “The netlogger methodology for high per-
formance distributed systems performance analysis,” in Proceed-
ings of IEEE the High Performance Distributed Computing Con-
ference (HPDC-7), Jul 1998.

[12] J. Hay, W. Feng, and M. Gardner, “Capturing network traffic with
a magnet,” in Proceedings of the 5th Annual Linux Showcase and
Conference (ALS’01), Nov 2001.

[13] “Netperf,” http://www.netperf.org.
[14] W. Feng, J. Hay, and M. Gardner, “Magnet: Monitor for

application-generated network traffic,” in Proceedings of the
10th International Conference on Computer Communication and
Networking (IC3N’01), Oct 2001.

[15] M. Kravetz, “Cpu affinity and ipi latency,” Jul 2001,
http://www.uwsg.indiana.edu/hypermail/
linux/kernel/0107.1/0770.html.

[16] Andreas Arcangeli, Private Communication.

APPENDIX

The following optional data structure can be com-
piled into MAGNeT to export TCP- and IP-specific
protocol state to user-space.

struct magnet_tcp {
/* data from "struct tcp_opt" in

include/net/sock.h */

/* TCP source port */
unsigned short source;
/* TCP destination port */
unsigned short dest;

/* Expected receiver window */
unsigned long snd_wnd;

/* smothed round trip time << 3 */
unsigned long srtt;
/* retransmit timeout */
unsigned long rto;

/* Packets which are "in flight" */
unsigned long packets_out;
/* Retransmitted packets out */
unsigned long retrans_out;

/* Slow start size threshold */
unsigned long snd_ssthresh;
/* Sending congestion window */
unsigned long snd_cwnd;

/* Current receiver window */
unsigned long rcv_wnd;
/* Tail+1 of data in send buffer */
unsigned long write_seq;
/* Head of yet unread data */
unsigned long copied_seq;

/* TCP flags*/
unsigned short fin:1,syn:1,rst:1,

psh:1,ack:1,urg:1,ece:1,cwr:1;
}; /* struct magnet_tcp */

struct magnet_ip {
/* IP header info */

unsigned char version;
unsigned char tos;
unsigned short id;
unsigned short frag_off;
unsigned char ttl;
unsigned char protocol;

}; /* struct magnet_ip */

Fig. 14. MAGNeT Extended Data for TCP and IP


